Construct validity of the Wechsler Intelligence Scale For Children – Fifth UK Edition: Exploratory and confirmatory factor analyses of the 16 primary and secondary subtests
Corresponding Author
Gary L. Canivez
Eastern Illinois University, Charleston, Illinois
Correspondence should be addressed to Gary L. Canivez, Department of Psychology, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920-3099 (email: [email protected]).Search for more papers by this authorCorresponding Author
Gary L. Canivez
Eastern Illinois University, Charleston, Illinois
Correspondence should be addressed to Gary L. Canivez, Department of Psychology, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920-3099 (email: [email protected]).Search for more papers by this authorAbstract
Background
There is inadequate information regarding the factor structure of the Wechsler Intelligence Scale for Children – Fifth UK Edition (WISC-VUK; Wechsler, 2016a, Wechsler Intelligence Scale for Children-Fifth UK Edition, Harcourt Assessment, London, UK) to guide interpretation.
Aims and methods
The WISC-VUK was examined using complementary exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) for all models proposed by Wechsler (2016b, Wechsler Intelligence Scale for Children-Fifth UK Edition: Administration and scoring manual, Harcourt Assessment, London, UK) as well as rival bifactor models.
Sample
The WISC-VUK standardization sample (N = 415) correlation matrix was used in analyses due to denial of standardization sample raw data.
Results
EFA did not support a theoretically posited fifth factor because only one subtest (Matrix Reasoning) had a salient pattern coefficient on the fifth factor. A model with four group factors and a general intelligence factor resembling the Wechsler Intelligence Scale for Children – Fourth Edition (WISC-IV; Wechsler, 2003, Wechsler Intelligence Scale for Children-Fourth Edition, Psychological Corporation, San Antonio, TX, USA) was supported by both EFA and CFA. General intelligence (g) was the dominant source of subtest variance and large omega-hierarchical coefficients supported interpretation of the Full Scale IQ (FSIQ) score. In contrast, the four group factors accounted for small portions of subtest variance and low omega-hierarchical subscale coefficients indicated that the four-factor index scores were of questionable interpretive value independent of g. Present results replicated independent assessments of the Canadian, Spanish, French, and US versions of the WISC-V (Canivez, Watkins, & Dombrowski, 2016, Psychological Assessment, 28, 975; 2017, Psychological Assessment, 29, 458; Fennollar-Cortés & Watkins, 2018, International Journal of School & Educational Psychology; Lecerf & Canivez, 2018, Psychological Assessment; Watkins, Dombrowski, & Canivez, 2018, International Journal of School and Educational Psychology).
Conclusion
Primary interpretation of the WISC-VUK should be of the FSIQ as an estimate of general intelligence.
Supporting Information
Filename | Description |
---|---|
bjep12230-sup-0001-Supinfo.pdfPDF document, 344.8 KB |
Figure S1. Scree plots for Horn's parallel analysis for WISC–VUK standardization sample (N = 415). Figure S2. Higher-order measurement model (4a), with standardized coefficients, for WISC–VUK standardization sample (N = 415) 16 Subtests. Table S1. Wechsler Intelligence Scale for Children-Fifth UK Edition (WISC–VUK) exploratory factor analysis: Five oblique factor solution for the total standardization sample (N = 415). Table S2. Wechsler Intelligence Scale for Children-Fifth UK Edition (WISC–VUK) exploratory factor analysis: Two and three oblique factor solutions for the total standardization sample (N = 415). Table S3. Sources of variance in the Wechsler Intelligence Scale for Children-Fifth UK Edition (WISC–VUK) for the total standardization sample (N = 415) according to an exploratory SL bifactor model (orthogonalized higher-order factor model) with five first–order factors. Table S4. Sources of variance in the WISC–VUK 16 subtests for the total standardization sample (N = 415) according to CFA higher-order model 4a. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- American Educational Research Association, American Psychological Association, & National Council on Measurement in Education (2014). Standards for educational and psychological testing. Washington, DC: American Educational Research Association.
- Bartlett, M. S. (1954). A further note on the multiplying factors for various chi-square approximations in factor analysis. Journal of the Royal Statistical Society, Series B, 16, 296–298.
- Beaujean, A. A. (2015). John Carroll's views on intelligence: Bi-factor vs. higher-order models. Journal of Intelligence, 3, 121–136. https://doi.org/10.3390/jintelligence3040121
10.3390/jintelligence3040121 Google Scholar
- Beaujean, A. A. (2016). Reproducing the wechsler intelligence scale for children-fifth edition: Factor model results. Journal of Psychoeducational Assessment, 34, 404–408. https://doi.org/0.1177/0734282916642679
- Beaujean, A. A., & Benson, N. F. (2019). Theoretically-consistent cognitive ability test development and score interpretation. Contemporary School Psychology, 23, 126–137. https://doi.org/10.1007/s40688-018-0182-1
10.1007/s40688-018-0182-1 Google Scholar
- Beaujean, A. A., Parkin, J., & Parker, S. (2014). Comparing Cattell-Horn-Carroll factor models: Differences between bifactor and higher order factor models in predicting language achievement. Psychological Assessment, 26, 789–805. https://doi.org/10.1037/a0036745
- Bentler, P. M., & Wu, E. J. C. (2016). EQS for windows. Encino, CA: Multivariate Software.
- Bodin, D., Pardini, D. A., Burns, T. G., & Stevens, A. B. (2009). Higher order factor structure of the WISC-IV in a clinical neuropsychological sample. Child Neuropsychology, 15, 417–424. https://doi.org/10.1080/09297040802603661
- Bridges, A. J., & Holler, K. A. (2007). How many is enough? Determining optimal sample sizes for normative studies in pediatric neuropsychology. Child Neuropsychology, 13, 528–538. https://doi.org/10.1080/09297040701233875
- British Psychological Society (2007). Psychological testing: A user's guide. Leicester, UK: Author.
- British Psychological Society (2016). Code of good practice for psychological testing. Leicester, UK: Author.
- Brown, T. A. (2015). Confirmatory factor analysis for applied research ( 2nd ed.). New York, NY: Guilford.
- Brown, T. A., & Moore, M. T. (2012). Confirmatory factor analysis. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 361–379). New York, NY: Guilford.
- Brunner, M., Nagy, G., & Wilhelm, O. (2012). A tutorial on hierarchically structured constructs. Journal of Personality, 80, 796–846. https://doi.org/10.1111/j.1467-6494.2011.00749.x
- Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods & Research, 33, 261–304. https://doi.org/10.1177/0049124104268644
- Canivez, G. L. (2008). Orthogonal higher-order factor structure of the Stanford-Binet Intelligence Scales-Fifth Edition for children and adolescents. School Psychology Quarterly, 23, 533–541. https://doi.org/10.1037/a0012884
- Canivez, G. L. (2010). Review of the Wechsler Adult Intelligence Test-Fourth Edition. In R. A. Spies, J. F. Carlson & K. F. Geisinger (Eds.), The eighteenth mental measurements yearbook (pp. 684–688). Lincoln, NE: Buros Institute of Mental Measurements.
- Canivez, G. L. (2011). Hierarchical factor structure of the Cognitive Assessment System: Variance partitions from the Schmid-Leiman (1957) procedure. School Psychology Quarterly, 26, 305–317. https://doi.org/10.1037/a0025973
- Canivez, G. L. (2013a). Psychometric versus actuarial interpretation of intelligence and related aptitude batteries. In D. H. Saklofske, C. R. Reynolds & V. L. Schwean (Eds.), Oxford handbook of child psychological assessments (pp. 84–112). New York, NY: Oxford University Press.
- Canivez, G. L. (2013b). Incremental validity of WAIS-IV factor index scores: Relationships with WIAT-II and WIAT-III subtest and composite scores. Psychological Assessment, 25, 484–495. https://doi.org/10.1037/a0032092
- Canivez, G. L. (2014a). Review of the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition. In J. F. Carlson, K. F. Geisinger & J. L. Jonson (Eds.), The nineteenth mental measurements yearbook (pp. 732–737). Lincoln, NE: Buros Center for Testing.
- Canivez, G. L. (2014b). Construct validity of the WISC-IV with a referred sample: Direct versus indirect hierarchical structures. School Psychology Quarterly, 29, 38–51. https://doi.org/10.1037/spq0000032
- Canivez, G. L. (2016). Bifactor modeling in construct validation of multifactored tests: Implications for understanding multidimensional constructs and test interpretation. In K. Schweizer & C. DiStefano (Eds.), Principles and methods of test construction: Standards and recent advancements (pp. 247–271). Gottingen, Germany: Hogrefe.
- Canivez, G. L., Dombrowski, S. C., & Watkins, M. W. (2018). Factor structure of the WISC–V for four standardization age groups: Exploratory and hierarchical factor analyses with the 16 primary and secondary subtests. Psychology in the Schools, 55, 741–769. https://doi.org/10.1002/pits.22138
- Canivez, G. L., Konold, T. R., Collins, J. M., & Wilson, G. (2009). Construct validity of the Wechsler Abbreviated Scale of Intelligence and Wide Range Intelligence Test: Convergent and structural validity. School Psychology Quarterly, 24, 252–265. https://doi.org/10.1037/a0018030
- Canivez, G. L., & Kush, J. C. (2013). WISC-IV and WAIS-IV structural validity: Alternate methods, alternate results. Commentary on Weiss et al. (2013a) and Weiss et al. (2013b). Journal of Psychoeducational Assessment, 31, 157–169. https://doi.org/10.1177/0734282913478036
- Canivez, G. L., & McGill, R. J. (2016). Factor structure of the Differential Ability Scales-Second Edition: Exploratory and hierarchical factor analyses with the core subtests. Psychological Assessment, 28, 1475–1488. https://doi.org/10.1037/pas0000279
- Canivez, G. L., & Watkins, M. W. (2010). Investigation of the factor structure of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV): Exploratory and higher order factor analyses. Psychological Assessment, 22, 827–836. https://doi.org/10.1037/a0020429
- Canivez, G. L., & Watkins, M. W. (2016). Review of the Wechsler Intelligence Scale for Children-Fifth Edition: Critique, commentary, and independent analyses. In A. S. Kaufman, S. E. Raiford & D. L. Coalson (Eds.), Intelligent testing with the WISC-V (pp. 683–702). Hoboken, NJ: Wiley.
- Canivez, G. L., Watkins, M. W., & Dombrowski, S. C. (2016). Factor structure of the Wechsler Intelligence Scale for Children-Fifth Edition: Exploratory factor analyses with the 16 primary and secondary subtests. Psychological Assessment, 28, 975–986. https://doi.org/10.1037/pas0000238
- Canivez, G. L., Watkins, M. W., & Dombrowski, S. C. (2017). Structural validity of the Wechsler Intelligence Scale for Children-Fifth Edition: Confirmatory factor analyses with the 16 primary and secondary subtests. Psychological Assessment, 29, 458–472. https://doi.org/10.1037/pas0000358
- Canivez, G. L., Watkins, M. W., Good, R., James, K., & James, T. (2017). Construct validity of the Wechsler Intelligence Scale for Children-Fourth UK Edition with a referred Irish sample: Wechsler and Cattell-Horn-Carroll model comparisons with 15 subtests. British Journal of Educational Psychology, 87, 383–407. https://doi.org/10.1111/bjep.12155
- Canivez, G. L., Watkins, M. W., James, T., James, K., & Good, R. (2014). Incremental validity of WISC-IVUK factor index scores with a referred Irish sample: Predicting performance on the WIAT-IIUK. British Journal of Educational Psychology, 84, 667–684. https://doi.org/10.1111/bjep.12056
- Carroll, J. B. (1985). Exploratory factor analysis: A tutorial. In D. K. Detterman (Ed.), Current topics in human intelligence: Research methodology, Vol. 1 (pp. 25–58). Norwood, NJ: Ablex.
- Carroll, J. B. (1993). Human cognitive abilities. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511571312
10.1017/CBO9780511571312 Google Scholar
- Carroll, J. B. (1995). On methodology in the study of cognitive abilities. Multivariate Behavioral Research, 30, 429–452. https://doi.org/10.1207/s15327906mbr3003_6
- Carroll, J. B. (1997). Theoretical and technical issues in identifying a factor of general intelligence. In B. Devlin, S. E. Fienberg, D. P. Resnick & K. Roeder (Eds.), Intelligence, genes, and success: Scientists respond to the Bell Curve (pp. 125–156). New York, NY: Springer-Verlag. https://doi.org/10.1007/978-1-4612-0669-9
- Carroll, J. B. (1998). Human cognitive abilities: A critique. In J. J. McArdle & R. W. Woodcock (Eds.), Human cognitive abilities in theory and practice (pp. 5–23). Mahwah, NJ: Erlbaum.
- Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245–276. https://doi.org/10.1207/s15327906mbr0102_10
- Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14, 464–504. https://doi.org/10.1080/10705510701301834
- Chen, H., Zhang, O., Raiford, S. E., Zhu, J., & Weiss, L. G. (2015). Factor invariance between genders on the Wechsler Intelligence Scale for Children-Fifth Edition. Personality and Individual Differences, 86, 1–5. https://doi.org/10.1016/j.paid.2015.05.020
- Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233–255. https://doi.org/10.1207/S15328007SEM0902_5
- Cucina, J. M., & Byle, K. (2017). The bifactor model fits better than the higher-order model in more than 90% of comparisons for mental abilities test batteries. Journal of Intelligence, 5, 1–21. https://doi.org/10.3390/jintelligence5030027
- Cucina, J. M., & Howardson, G. N. (2017). Woodcock-Johnson-III, kaufman adolescent and adult intelligence test (KAIT), Kaufman Assessment Battery for Children (KABC), and differential ability scales (DAS) support Carroll but not Cattell-Horn. Psychological Assessment, 29, 1001–1015. https://doi.org/10.1037/pas0000389
- DeMars, C. E. (2013). A tutorial on interpreting bifactor model scores. International Journal of Testing, 13, 354–378. https://doi.org/10.1080/15305058.2013.799067
10.1080/15305058.2013.799067 Google Scholar
- DeVellis, R. F. (2017). Scale development: Theory and applications ( 4th ed.). Thousand Oaks, CA: Sage.
- DiStefano, C., & Dombrowski, S. C. (2006). Investigating the theoretical structure of the Stanford-Binet-Fifth Edition. Journal of Psychoeducational Assessment, 24, 123–136. https://doi.org/10.1177/0734282905285244
- DiStefano, C., & Hess, B. (2005). Using confirmatory factor analysis for construct validation: An empirical review. Journal of Psychoeducational Assessment, 23, 225–241. https://doi.org/10.1177/073428290502300303
- Dombrowski, S. C. (2013). Investigating the structure of the WJ-III Cognitive at school age. School Psychology Quarterly, 28, 154–169. https://doi.org/10.1037/spq0000010
- Dombrowski, S. C., Canivez, G. L., & Watkins, M. W. (2018). Factor structure of the 10 WISC-V primary subtests across four standardization age groups. Contemporary School Psychology, 22, 90–104. https://doi.org/10.1007/s40688-017-0125-2
10.1007/s40688-017-0125-2 Google Scholar
- Dombrowski, S. C., Canivez, G. L., Watkins, M. W., & Beaujean, A. (2015). Exploratory bifactor analysis of the Wechsler Intelligence Scale for Children—Fifth Edition with the 16 primary and secondary subtests. Intelligence, 53, 194–201. https://doi.org/10.1016/j.intell.2015.10.009
- Dombrowski, S. C., McGill, R. J., & Canivez, G. L. (2017). Exploratory and hierarchical factor analysis of the WJ IV Cognitive at school age. Psychological Assessment, 29, 394–407. https://doi.org/10.1037/pas0000350
- Dombrowski, S. C., McGill, R. J., & Canivez, G. L. (2018). An alternative conceptualization of the theoretical structure of the Woodcock-Johnson IV Tests of Cognitive Abilities at school age: A confirmatory factor analytic investigation. Archives of Scientific Psychology, 6, 1–13. https://doi.org/10.1037/arc0000039
10.1037/arc0000039 Google Scholar
- Dombrowski, S. C., & Watkins, M. W. (2013). Exploratory and higher order factor analysis of the WJ-III full test battery: A school aged analysis. Psychological Assessment, 25, 442–455. https://doi.org/10.1037/a0031335
- Dombrowski, S. C., Watkins, M. W., & Brogan, M. J. (2009). An exploratory investigation of the factor structure of the Reynolds Intellectual Assessment Scales (RIAS). Journal of Psychoeducational Assessment, 27, 494–507. https://doi.org/10.1177/0734282909333179
- Fennollar-Cortés, J., & Watkins, M. W. (2018). Construct validity of the Spanish version of the Wechsler Intelligence Scale for Children Fifth Edition (WISC-VSpain). International Journal of School & Educational Psychology. Advance online publication. https://doi.org/10.1080/21683603.2017.1414006
10.1080/21683603.2017.1414006 Google Scholar
- Ferrando, P. J., & Navarro-González, D. (2018). Assessing the quality and usefulness of factor-analytic applications to personality measures: A study with the statistical anxiety scale. Personality and Individual Differences, 123, 81–86. https://doi.org/10.1016/j.paid.2017.11.014
- Frazier, T. W., & Youngstrom, E. A. (2007). Historical increase in the number of factors measured by commercial tests of cognitive ability: Are we overfactoring? Intelligence, 35, 169–182. https://doi.org/10.1016/j.intell.2006.07.002
- Frisby, C. L., & Beaujean, A. A. (2015). Testing Spearman's hypotheses using a bi-factor model with WAIS-IV/WMS-IV standardization data. Intelligence, 51, 79–97. https://doi.org/10.1016/j.intell.2015.04.007
- Gignac, G. E. (2005). Revisiting the factor structure of the WAIS-R: Insights through nested factor modeling. Assessment, 12, 320–329. https://doi.org/10.1177/1073191105278118
- Gignac, G. E. (2006). The WAIS-III as a nested factors model: A useful alternative to the more conventional oblique and higher-order models. Journal of Individual Differences, 27, 73–86. https://doi.org/10.1027/1614-0001.27.2.73
10.1027/1614-0001.27.2.73 Google Scholar
- Gignac, G. (2008). Higher-order models versus direct hierarchical models: g as superordinate or breadth factor? Psychology Science Quarterly, 50, 21–43.
- Gignac, G. E. (2016). The higher-order model imposes a proportionality constraint: That is why the bifactor model tends to fit better. Intelligence, 55, 57–68. https://doi.org/10.1016/j.intell.2016.01.006
- Gignac, G. E., & Watkins, M. W. (2013). Bifactor modeling and the estimation of model-based reliability in the WAIS-IV. Multivariate Behavioral Research, 48, 639–662. https://doi.org/10.1080/00273171.2013.804398
- Glutting, J. J., Watkins, M. W., Konold, T. R., & McDermott, P. A. (2006). Distinctions without a difference: The utility of observed versus latent factors from the WISC-IV in estimating reading and math achievement on the WIAI-II. Journal of Special Education, 40, 103–114. https://doi.org/10.1177/00224669060400020101
- Golay, P., & Lecerf, T. (2011). Orthogonal higher order structure and confirmatory factor analysis of the French Wechsler Adult Intelligence Scale (WAIS-III). Psychological Assessment, 23, 143–152. https://doi.org/10.1037/a0021230
- Gomez, R., Vance, A., & Watson, S. (2016). Bifactor model of WISC-IV: Applicability and measurement invariance in low and normal IQ groups. Psychological Assessment, 29, 902–912. https://doi.org/10.1037/pas0000369
- Gorsuch, R. L. (1983). Factor analysis ( 2nd ed.). Hillsdale, NJ: Erlbaum.
- Gustafsson, J.-E., & Balke, G. (1993). General and specific abilities as predictors of school achievement. Multivariate Behavioral Research, 28, 407–434. https://doi.org/10.1207/s15327906mbr2804_2
- Haig, B. D. (2014). Investigating the psychological world: Scientific method in the behavioral sciences. Cambridge, MA: MIT Press. https://doi.org/10.7551/mitpress/9780262027366.001.0001
10.7551/mitpress/9780262027366.001.0001 Google Scholar
- Holzinger, K. J., & Swineford, F. (1937). The bi-factor method. Psychometrika, 2, 41–54. https://doi.org/10.1007/BF02287965
- Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrica, 30, 179–185. https://doi.org/10.1007/BF02289447
- Horn, J. L. (1989). Models of intelligence. In R. L. Linn (Ed.), Intelligence: Measurement, theory, and public policy (pp. 29–73). Urbana-Champaign, IL: University of Illinois Press.
- Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligence. Journal of Educational Psychology, 57, 253–270. https://doi.org/10.1037/h0023816
- Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 5, 1–55. https://doi.org/10.1080/10705519909540118
- International Test Commission (2013). International guidelines for test use (Version 1.2). Retrieved from https://www.intestcom.org
- Jensen, A. R., & Weng, L.-J. (1994). What is a good g? Intelligence, 18, 231–258. https://doi.org/10.1016/0160-2896(94)90029-9
- Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31–36. https://doi.org/10.1007/BF02291575
- Keith, T. Z. (2005). Using confirmatory factor analysis to aid in understanding the constructs measured by intelligence tests. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and issues ( 2nd ed., pp. 581–614). New York, NY: Guilford.
- Kline, R. B. (2016). Principles and practice of structural equation modeling ( 4th ed.). New York, NY: Guilford.
- Kranzler, J. H., Benson, N., & Floyd, R. G. (2015). Using estimated factor scores from a bifactor analysis to examine the unique effects of the latent variables measured by the WAIS-IV on academic achievement. Psychological Assessment, 27, 1402–1416. https://doi.org/10.1037/pas0000119
- Le, H., Schmidt, F. L., Harter, J. K., & Lauver, K. J. (2010). The problem of empirical redundancy of constructs in organizational research: An empirical investigation. Organizational Behavior and Human Decision Processes, 112, 112–125. https://doi.org/10.1016/j.obhdp.2010.02.003
- Lecerf, T., & Canivez, G. L. (2018). Complementary exploratory and confirmatory factor analyses of the French WISC–V: Analyses based on the standardization sample. Psychological Assessment, 30, 793–808. https://doi.org/10.1037/pas0000526
- Little, T. D., Lindenberger, U., & Nesselroade, J. R. (1999). On selecting indicators for multivariate measurement and modeling with latent variables: When “good” indicators are bad and “bad” indicators are good. Psychological Methods, 4, 192–211. https://doi.org/10.1037/1082-989X.4.2.192
- MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalizing on chance. Psychological Bulletin, 111, 490–504. https://doi.org/10.1037/0033-2909.111.3.490
- Mansolf, M., & Reise, S. P. (2017). When and why the second-order and bifactor models are distinguishable. Intelligence, 61, 120–129. https://doi.org/10.1016/j.intell.2017.01.012
- McDonald, R. P. (1999). Test theory: A unified approach. Mahwah, NJ: Erlbaum.
- McDonald, R. P. (2010). Structural models and the art of approximation. Perspectives on Psychological Science, 5, 675–686. https://doi.org/10.1177/1745691610388766
- McGill, R. J., & Canivez, G. L. (2016). Orthogonal higher order structure of the WISC-IV Spanish using hierarchical exploratory factor analytic procedures. Journal of Psychoeducational Assessment, 36, 600–606. https://doi.org/10.1177/0734282915624293
- McGill, R. J., & Canivez, G. L. (2017). Confirmatory factor analyses of the WISC-IV Spanish core and supplemental subtests: Validation evidence of the Wechsler and CHC models. International Journal of School and Educational Psychology, 6, 239–251. https://doi.org/10.1080/21683603.2017.1327831
10.1080/21683603.2017.1327831 Google Scholar
- Morgan, G. B., Hodge, K. J., Wells, K. E., & Watkins, M. W. (2015). Are fit indices biased in favor of bi-factor models in cognitive ability research?: A comparison of fit in correlated factors, higher-order, and bi-factor models via Monte Carlo simulations. Journal of Intelligence, 3, 2–20. https://doi.org/10.3390/jintelligence3010002
10.3390/jintelligence3010002 Google Scholar
- Morin, A. J. S., Arens, A. K., Tran, A., & Caci, H. (2016). Exploring sources of construct-relevant multidimensionality in psychiatric measurement: A tutorial and illustration using the composite scale of morningness. International Journal of Methods in Psychiatric Research, 25, 277–288. https://doi.org/10.1002/mpr.1485
- Murray, A. L., & Johnson, W. (2013). The limitations of model fit in comparing the bi-factor versus higher-order models of human cognitive ability structure. Intelligence, 41, 407–422. https://doi.org/10.1016/j.intell.2013.06.004
- Nelson, J. M., & Canivez, G. L. (2012). Examination of the structural, convergent, and incremental validity of the Reynolds Intellectual Assessment Scales (RIAS) with a clinical sample. Psychological Assessment, 24, 129–140. https://doi.org/10.1037/a0024878
- Nelson, J. M., Canivez, G. L., & Watkins, M. W. (2013). Structural and incremental validity of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) with a clinical sample. Psychological Assessment, 25, 618–630. https://doi.org/10.1037/a0032086
- Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2, 175–220. https://doi.org/10.1037/1089-2680.2.2.175
10.1037/1089-2680.2.2.175 Google Scholar
- Oakland, T., Douglas, S., & Kane, H. (2016). Top ten standardized tests used internationally with children and youth by school psychologists in 64 countries: A 24-year follow-up study. Journal of Psychoeducational Assessment, 34, 166–176. https://doi.org/10.1177/0734282915595303
- Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47, 667–696. https://doi.org/10.1080/00273171.2012.715555
- Reise, S. P., Bonifay, W. E., & Haviland, M. G. (2013). Scoring and modeling psychological measures in the presence of multidimensionality. Journal of Personality Assessment, 95, 129–140. https://doi.org/10.1080/00223891.2012.725437
- Reynolds, M. R., & Keith, T. Z. (2017). Multi-group and hierarchical confirmatory factor analysis of the Wechsler Intelligence Scale for Children-Fifth Edition: What does it measure? Intelligence, 62, 31–47. https://doi.org/10.1016/j.intell.2017.02.005
- Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Applying bifactor statistical indices in the evaluation of psychological measures. Journal of Personality Assessment, 98, 223–237. https://doi.org/10.1080/00223891.2015.1089249
- Ropovik, I. (2015). A cautionary note on testing latent variable models. Frontiers in Psychology, 6, 1–8. https://doi.org/10.3389/fpsyg.2015.01715
- Sattler, J. M., Dumond, R., & Coalson, D. L. (2016). Assessment of children: WISC-V and WPPSI-IV. San Diego, CA: Sattler.
- Schmid, J., & Leiman, J. M. (1957). The development of hierarchical factor solutions. Psychometrika, 22, 53–61. https://doi.org/10.1007/BF02289209
- Schneider, W. J., & McGrew, K. S. (2012). The Cattell-Horn-Carroll model of intelligence. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and issues ( 3rd ed., pp. 99–144). New York, NY: Guilford.
- Shaffer, J. A., DeGeest, D., & Li, A. (2016). Tackling the problem of construct proliferation: A guide to assessing the discriminant validity of conceptually related constructs. Organizational Research Methods, 19, 80–110. https://doi.org/10.1177/1094428115598239
- Spearman, C. (1927). The abilities of man. Cambridge, UK: New York, NY.
- Strickland, T., Watkins, M. W., & Caterino, L. C. (2015). Structure of the Woodcock-Johnson III cognitive tests in a referral sample of elementary school students. Psychological Assessment, 27, 689–697. https://doi.org/10.1037/pas0000052
- Styck, K. M., & Watkins, M. W. (2016). Structural validity of the WISC-IV for students with learning disabilities. Journal of Learning Disabilities, 49, 216–224. https://doi.org/10.1177/0022219414539565
- Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington, DC: American Psychological Association. https://doi.org/10.1037/10694-000
10.1037/10694-000 Google Scholar
- Thurstone, L. L. (1947). Multiple-factor analysis. Chicago, IL: University of Chicago Press.
- Tukey, J. W. (1980). We need both exploratory and confirmatory. American Statistician, 34, 23–25. https://doi.org/10.2307/2682991
- Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41, 321–327. https://doi.org/10.1007/BF02293557
- Watkins, M. W. (2000). Monte Carlo PCA for parallel analysis [Computer software]. Phoenix, AZ: Ed & Psych Associates.
- Watkins, M. W. (2004). MacOrtho. [Computer software]. Phoenix, AZ: Ed & Psych Associates.
- Watkins, M. W. (2006). Orthogonal higher order structure of the Wechsler Intelligence Scale for Children-Fourth Edition. Psychological Assessment, 18, 123–125. https://doi.org/10.1037/1040-3590.18.1.123
- Watkins, M. W. (2007). SEscree [Computer software]. Phoenix, AZ: Ed & Psych Associates.
- Watkins, M. W. (2010). Structure of the Wechsler Intelligence Scale for Children-Fourth Edition among a national sample of referred students. Psychological Assessment, 22, 782–787. https://doi.org/10.1037/a0020043
- Watkins, M. W. (2013). Omega [Computer software]. Phoenix, AZ: Ed & Psych Associates.
- Watkins, M. W. (2017). The reliability of multidimensional neuropsychological measures: From alpha to omega. The Clinical Neuropsychologist, 31, 1113–1126. https://doi.org/10.1080/13854046.2017.1317364
- Watkins, M. W. (2018). Exploratory factor analysis: A guide to best practice. Journal of Black Psychology, 44, 219–246. https://doi.org/10.1177/0095798418771807
- Watkins, M. W., & Beaujean, A. A. (2014). Bifactor structure of the Wechsler preschool and primary scale of intelligence-fourth edition. School Psychology Quarterly, 29, 52–63. https://doi.org/10.1037/spq0000038
- Watkins, M. W., Canivez, G. L., James, T., Good, R., & James, K. (2013). Construct validity of the WISC-IV-UK with a large referred Irish sample. International Journal of School and Educational Psychology, 1, 102–111. https://doi.org/10.1080/21683603.2013.794439
10.1080/21683603.2013.794439 Google Scholar
- Watkins, M. W., Dombrowski, S. C., & Canivez, G. L. (2018). Reliability and factorial validity of the Canadian Wechsler Intelligence Scale for Children–Fifth Edition. International Journal of School and Educational Psychology, 6, 252–265. https://doi.org/10.1080/21683603.2017.1342580
10.1080/21683603.2017.1342580 Google Scholar
- Wechsler, D. (2003). Wechsler intelligence scale for children-fourth edition. San Antonio, TX: Psychological Corporation.
- Wechsler, D. (2004). Wechsler intelligence scale for children—fourth (UK ed.). London, UK: Harcourt Assessment.
- Wechsler, D. (2008). Wechsler adult intelligence scale—fourth edition. San Antonio, TX: Psychological Corporation.
- Wechsler, D. (2012). Wechsler preschool and primary scale of intelligence—fourth edition. San Antonio, TX: Psychological Corporation.
- Wechsler, D. (2014a). Wechsler intelligence scale for children-fifth edition. San Antonio, TX: NCS Pearson.
- Wechsler, D. (2014b). Wechsler intelligence scale for children-fifth edition technical and interpretive manual. San Antonio, TX: NCS Pearson.
- Wechsler, D. (2014c). Wechsler intelligence scale for children-fifth edition: Canadian manual. Toronto, ON: Pearson Canada Assessment.
- Wechsler, D. (2015). Escala de inteligencia de Wechsler para niños-V. Manual técnico y de interpretación. Madrid, Spain: Pearson Educación.
- Wechsler, D. (2016a). Wechsler intelligence scale for children-fifth (UK ed.). London, UK: Harcourt Assessment.
- Wechsler, D. (2016b). Wechsler intelligence scale for children-fifth UK edition: Administration and scoring manual. London, UK: Harcourt Assessment.
- Wechsler, D. (2016c). Echelle d'intelligence de Wechsler pour enfants-5e édition. Paris, France: Pearson France-ECPA.
- Wood, J. M., Tataryn, D. J., & Gorsuch, R. L. (1996). Effects of under- and overextraction on principal axis factor analysis with varimax rotation. Psychological Methods, 1, 254–265. https://doi.org/10.1037/1082-989X.1.4.354
- Yung, Y.-F., Thissen, D., & McLeod, L. D. (1999). On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika, 64, 113–128. https://doi.org/10.1007/BF02294531
- Zoski, K. W., & Jurs, S. (1996). An objective counterpart to the visual scree test for factor analysis: The standard error scree. Educational and Psychological Measurement, 56, 443–451. https://doi.org/10.1177/0013164496056003006