Which method delivers greater signal-to-noise ratio: Structural equation modelling or regression analysis with weighted composites?
Corresponding Author
Ke-Hai Yuan
University of Notre Dame, Notre Dame, Indiana, USA
Nanjing University of Posts and Telecommunications, Nanjing, China
Correspondence
Yongfei Fang, Beijing Institute of Technology, Beijing, China
Email: [email protected]
Ke-Hai Yuan, University of Notre Dame, Notre Dame, IN, USA,
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Methodology, Writing - original draft
Search for more papers by this authorCorresponding Author
Yongfei Fang
Beijing Institute of Technology, Beijing, China
Correspondence
Yongfei Fang, Beijing Institute of Technology, Beijing, China
Email: [email protected]
Ke-Hai Yuan, University of Notre Dame, Notre Dame, IN, USA,
Email: [email protected]
Contribution: Formal analysis, Investigation, Methodology, Writing - review & editing
Search for more papers by this authorCorresponding Author
Ke-Hai Yuan
University of Notre Dame, Notre Dame, Indiana, USA
Nanjing University of Posts and Telecommunications, Nanjing, China
Correspondence
Yongfei Fang, Beijing Institute of Technology, Beijing, China
Email: [email protected]
Ke-Hai Yuan, University of Notre Dame, Notre Dame, IN, USA,
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Methodology, Writing - original draft
Search for more papers by this authorCorresponding Author
Yongfei Fang
Beijing Institute of Technology, Beijing, China
Correspondence
Yongfei Fang, Beijing Institute of Technology, Beijing, China
Email: [email protected]
Ke-Hai Yuan, University of Notre Dame, Notre Dame, IN, USA,
Email: [email protected]
Contribution: Formal analysis, Investigation, Methodology, Writing - review & editing
Search for more papers by this authorAbstract
Observational data typically contain measurement errors. Covariance-based structural equation modelling (CB-SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and diagnosis of individuals/participants. But regression analysis with weighted composites has been known to yield attenuated regression coefficients when predictors contain errors. Contrary to the common belief that CB-SEM is the preferred method for the analysis of observational data, this article shows that regression analysis via weighted composites yields parameter estimates with much smaller standard errors, and thus corresponds to greater values of the signal-to-noise ratio (SNR). In particular, the SNR for the regression coefficient via the least squares (LS) method with equally weighted composites is mathematically greater than that by CB-SEM if the items for each factor are parallel, even when the SEM model is correctly specified and estimated by an efficient method. Analytical, numerical and empirical results also show that LS regression using weighted composites performs as well as or better than the normal maximum likelihood method for CB-SEM under many conditions even when the population distribution is multivariate normal. Results also show that the LS regression coefficients become more efficient when considering the sampling errors in the weights of composites than those that are conditional on weights.
CONFLICT OF INTEREST
All authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the finding of the study are as described in the paper, and are openly available at [https://www3.nd.edu/~kyuan/PLS-SEM/SNR/].
REFERENCES
- Allen, M. J., & Yen, W. M. (1979). Introduction to measurement theory. Brooks-Cole.
- Anderson, T. W., & Amemiya, Y. (1988). The asymptotic normal distribution of estimators in factor analysis under general conditions. Annals of Statistics, 16(2), 759–771. https://doi.org/10.1214/aos/1176350834
- Bentler, P. M. (1968). Alpha-maximized factor analysis (Alphamax): Its relation to alpha and canonical factor analysis. Psychometrika, 33(3), 335–345. https://doi.org/10.1007/BF02289328
- Bentler, P. M., & Kano, Y. (1990). On the equivalence of factors and components. Multivariate Behavioral Research, 25, 67–74. https://doi.org/10.1207/s15327906mbr2501_8
- Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis: Theory and practice. MIT Press.
- Boardman, A. E., Hui, B. S., & Wold, H. (1981). The partial least squares-fix point method of estimating interdependent systems with latent variables. Communications in Statistics – Theory and Methods, 10(7), 613–639. https://doi.org/10.1080/03610928108828062
- Cadigan, N. G. (1995). Local influence in structural equation models. Structural Equation Modeling, 2, 13–30. https://doi.org/10.1080/10705519509539992
- Chin, W. W. (1998). The partial least squares approach for structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–236). Lawrence Erlbaum Associates.
- Cho, G., & Choi, J. Y. (2020). An empirical comparison of generalized structured component analysis and partial least squares path modeling under variance-based structural equation models. Behaviormetrika, 47(1), 243–272. https://doi.org/10.1007/s41237-019-00098-0
10.1007/s41237-019-00098-0 Google Scholar
- Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037/0033-2909.112.1.155
- Cole, D. A., & Preacher, K. J. (2014). Manifest variable path analysis: Potentially serious and misleading consequences due to uncorrected measurement error. Psychological Methods, 19, 300–315. https://doi.org/10.1037/a0033805
- Croon, M. (2002). Using predicted latent scores in general latent structure models. In G. A. Marcoulides & I. Moustaki (Eds.), Latent variable and latent structure modeling (pp. 195–223). Lawrence Erlbaum.
- Devlieger, I., Mayer, A., & Rosseel, Y. (2016). Hypothesis testing using factor score regression: A comparison of four methods. Educational and Psychological Measurement, 76, 741–770. https://doi.org/10.1177/0013164415607618
- Dijkstra, T. (1983). Some comments on maximum likelihood and partial least squares estimates. Journal of Econometrics, 22, 67–90. https://doi.org/10.1016/0304-4076(83)90094-5
- Dijkstra, T. K. (2017). A perfect match between a model and a mode. In H. Latan & R. Noonan (Eds.), Partial least squares path modeling: Basic concepts, methodological issues and applications (pp. 55–80). Springer. /10.1007/978-3-319-64069-3_4
10.1007/978-3-319-64069-3_4 Google Scholar
- Dijkstra, T. K., & Henseler, J. (2015). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics and Data Analysis, 81, 10–23. https://doi.org/10.1016/j.csda.2014.07.008
- DiStefano, C., Zhu, M., & Mindrila, D. (2009). Understanding and using factor scores: Considerations for the applied researcher. Practical Assessment, Research, and Evaluation, 14, Article 20. https://doi.org/10.7275/da8t-4g52
10.7275/da8t?4g52 Google Scholar
- Fuller, W. A. (1987). Measurement error models. Wiley.
10.1002/9780470316665 Google Scholar
- Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) ( 2nd ed.). Sage.
- Henseler, J. (2021). Composite-based structural equation modeling. Guilford.
- Hoshino, T., & Bentler, P. M. (2013). Bias in factor score regression and a simple solution. In A. R. Leon & K. C. Chough (Eds.), Analysis of mixed data: Methods & applications (pp. 43–61). Chapman and Hall. https://doi.org/10.1201/B14571-11
10.1201/b14571-5 Google Scholar
- Hwang, H., Cho, G., Jung, K., Falk, C., Flake, J., Jin, M. J., & Lee, S. H. (2021). An approach to structural equation modeling with both factors and components: Integrated generalized structured component analysis. Psychological Methods, 26(3), 273–294. https://doi.org/10.1037/met0000
- Hwang, H., Sarstedt, M., Cheah, J. H., & Ringle, C. M. (2020). A concept analysis of methodological research on composite-based structural equation modeling: Bridging PLSPM and GSCA. Behaviormetrika, 47, 219–241. https://doi.org/10.1007/s41237-019-00085-5
10.1007/s41237-019-00085-5 Google Scholar
- Lawley, D. N., & Maxwell, A. E. (1971). Factor analysis as a statistical method. Macmillan Publishing.
- Loehlin, J. C., & Beaujean, A. A. (2017). Latent variable models: An introduction to factor, path, and structural equation analysis ( 5th ed.). Routledge.
- MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modification in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111, 490–504. https://doi.org/10.1037/0033-2909.111.3.490
- Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. Academic Press.
- McDonald, R. P. (1996). Path analysis with composite variables. Multivariate Behavioral Research, 31, 239–270. https://doi.org/10.1207/s15327906mbr3102_5
- McDonald, R. P. (1999). Test theory: A unified treatment. Lawrence Erlbaum Associates. https://doi.org/10.4324/9781410601087
- Pierce, D. A. (1982). The asymptotic effect of substituting estimators for parameters in certain types of statistics. Annals of Statistics, 10(2), 475–478. https://doi.org/10.1214/aos/1176345788
- Poon, W.-Y., & Poon, Y. S. (2002). Influential observations in the estimation of mean vector and covariance matrix. British Journal of Mathematical and Statistical Psychology, 55, 177–192. https://doi.org/10.1348/000711002159644
- Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of Research in Marketing, 26, 332–344. https://doi.org/10.1016/j.ijresmar.2009.08.001
- Rhemtulla, M., van Bork, R., & Borsboom, D. (2020). Worse than measurement error: Consequences of inappropriate latent variable measurement models. Psychological Methods, 25(1), 30–45. https://doi.org/10.1037/met0000220
- Rönkkö, M. (2014). The effects of chance correlations on partial least squares path modeling. Organizational Research Methods, 17(2), 164–181. https://doi.org/10.1177/1094428114525667
- Schamberger, T., Schuberth, F., Henseler, J., & Dijkstra, T. K. (2020). Robust partial least squares path modeling. Behaviormetrika, 47, 307–334. https://doi.org/10.1007/s41237-019-00088-2
10.1007/s41237-019-00088-2 Google Scholar
- Schneeweiss, H. (1993). Consistency at large in models with latent variables. In K. Haagen, D. J. Bartholomew, & M. Deistler (Eds.), Statistical modelling and latent variables (pp. 299–320). Elsevier Science Publishers.
- Schott, J. R. (2017). Matrix analysis for statistics ( 3rd ed.). Wiley.
- Schuberth, F. (2021). The Henseler-Ogasawara specification of composites in structural equation modeling: A tutorial. Psychological Methods. https://doi.org/10.1037/met0000432
- Skrondal, A., & Laake, P. (2001). Regression among factor scores. Psychometrika, 66, 563–575. https://doi.org/10.1007/BF02296196
- Tanaka, Y., Watadani, S., & Moon, S. H. (1991). Influence in covariance structure analysis: With an application to confirmatory factor analysis. Communications in Statistics: Theory and Method, 20, 3805–3821. https://doi.org/10.1080/03610929108830742
- Treiblmaier, H., Bentler, P. M., & Mair, P. (2011). Formative constructs implemented via common factors. Structural Equation Modeling, 18(1), 1–17. https://doi.org/10.1080/10705511.2011.532693
- Velicer, W. F., & Jackson, D. N. (1990). Component analysis versus common factor analysis: Some issues in selecting an appropriate procedure. Multivariate Behavioral Research, 25, 1–28. https://doi.org/10.1207/s15327906mbr2501_1
- Vinzi, V. E., Trinchera, L., & Amato, S. (2010). PLS path modeling: From foundations to recent developments and open issues for model assessment and improvement. In V. E. Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications (pp. 47–82). Springer.
10.1007/978-3-540-32827-8_3 Google Scholar
- Wold, H. (1980). Model construction and evaluation when theoretical knowledge is scarce. In J. Kmenta & J. B. Ramsey (Eds.), Evaluation of econometric models (pp. 47–74). Academic Press.
10.1016/B978-0-12-416550-2.50007-8 Google Scholar
- Yuan, K.-H., & Bentler, P. M. (2002). On robustness of the normal-theory based asymptotic distributions of three reliability coefficient estimates. Psychometrika, 67, 251–259. https://doi.org/10.1007/BF02294845
- Yuan, K.-H., & Bentler, P. M. (2007). Structural equation modeling. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics 26: Psychometrics (pp. 297–358). North-Holland.
- Yuan, K.-H., & Chan, W. (2011). Biases and standard errors of standardized regression coefficients. Psychometrika, 76, 670–690. https://doi.org/10.1007/S11336-011-9224-6
- Yuan, K.-H., & Deng, L. (2021). Equivalence of partial-least-squares SEM and the methods of factor-score regression. Structural Equation Modeling, 28, 557–571. https://doi.org/10.1080/10705511.2021.1894940
- Yuan, K.-H., & Gomer, B. (2021). An overview of applied robust methods. British Journal of Mathematical and Statistical Psychology, 74, 199–246. https://doi.org/10.1111/bmsp.12230
- Yuan, K.-H., & Jennrich, R. I. (2000). Estimating equations with nuisance parameters: Theory and applications. Annals of the Institute of Statistical Mathematics, 52(2), 343–350. https://doi.org/10.1023/A:1004122007440
- Yuan, K.-H., & Liu, F. (2021). Which method is more reliable in performing model modification: Lasso regularization or Lagrange multiplier test? Structural Equation Modeling, 28(1), 69–81. https://doi.org/10.1080/10705511.2020.1768858
- Yuan, K.-H., Marshall, L. L., & Bentler, P. M. (2002). A unified approach to exploratory factor analysis with missing data, nonnormal data, and in the presence of outliers. Psychometrika, 67, 95–122. https://doi.org/10.1007/BF02294711
- Yuan, K.-H., Wen, Y., & Tang, J. (2020). Regression analysis with latent variables by partial least squares and four other composite scores: Consistency, bias and correction. Structural Equation Modeling, 27(3), 333–350. https://doi.org/10.1080/10705511.2019.1647107